Sign Up to the SuperSTEM contact list to get notified about major events at SuperSTEM via email

BBC4 at SuperSTEM


Today we had the pleasure to host Prof Jim Al-Khalili to talk about all things electron microscopy & look at single atoms for BBC4's BigAndSmall. To mark the occasion here is the worlds smallest portrait of Jim made by FIB!!

Portrait credit to Aleksander B. Mosberg FIB ninja extraordinaire.



We are delighted to congratulate our very own Dr Demie Kepaptsoglou on her promotion to Senior Research Fellow at the University of York!

Announcing the NION IRIS


We are excited to announce the installation of the Nion IRIS high resolution EELS spectrometer. The IRIS, installed on our SSTEM3 Nion HERMES monochromated microscope is equipped with a Dectris ELA electron-counting detector. The new spectrometer will drastically improve the energy resolution and signal detection for ultra-low-loss-EELS measurements.



VirtualFIB is a Blender application template, developed by SuperSTEM staff scientist Aleksander Mosberg.

The program is designed to simplify and automate different scenarios encountered when doing FIB technique development. For more details click here.

New member of staff


We are delighted to announce that Dr Khalil El Hajraoui, has just joined the team as a SuperSTEM staff scientist! Khalil is an ins-in situ electric measurement specialist joining us from the International Iberian Nanotechnology Laboratory .

Farewell to Fredrik Hage


We bid farewell to our member of staff Dr. Fredrik Hage who is off to start his new adventure as Assistant Professor at the Department of Physics, University of Oslo, Norway. We are extremely proud for him but a little sad to see him go! We wish him the best of luck and success with his new post!

New Horizons for research through adventurous projects


Our member of staff and University of York Research Fellow Dr. Demie Kepaptsoglou has been awarded one of the highly competitive EPSRC New Horizons projects for supporting high-risk, adventurous mathematical and physical science project. The project - one of the 126 out of more than 1300 funded - is entitled: 'Seeing magnons at spin-to-charge-conversion interfaces' and aims to develop magnon EELS spectroscopy in an electron microscope.

Job vacancy for SuperSTEM research associate (University of York)


A fixed term postdoctoral appointment is available initially for 18 months, with a possibility for extension up to 24 months, via the University of York. The post will be based at the SuperSTEM Laboratory, to work with the on-site facility team, on the EPSRC New Horizons 2020 Project “Seeing magnons at spin-to-charge conversion interfaces”. We are seeking an ambitious electron microscopist who will be responsible for research on this project, developing the methodology for vibrational and magnon electron energy loss spectroscopy in an electron microscope.

For more details for the post and application process:

Informal inquires can be addressed to Dr. Demie Kepaptsoglou

Exploring the functional chemistry of carbonaceous meteorites


Carbonaceous chondrites provide important samples of the very early solar nebula. These complex rocks recorded snapshots of events 4.57 Ga ago that can be disentangled by advanced analytical techniques on Earth. In a new study recently published in Scientific Reports, Dr Christian Vollmer from the University of Münster (Germany) , in collaboration with researchers from the Max Planck Institute for Chemistry (Mainz Germany), the Natural History Museum (London, UK) , the Diamond Light Source (Didcot, UK) and SuperSTEM, explore the functional chemistry of the Maribo carbonaceous chondrite, an observed fall from Denmark in 2009.

The study, combining STEM-EELS, Nano-SIMS and STXM looks into fine-grained organic matter within less altered matrix regions of the Maribo, demonstrates the relatively unaltered nature of this OM. The combined high-spatial resolution analyses of primitive matrix components therefore highlight the important character of Maribo as a key sample of the very early solar nebula.

Full Paper : Vollmer, C., Leitner, J., Kepaptsoglou, D. et al. A primordial 15N-depleted organic component detected within the carbonaceous chondrite Maribo. Sci Rep 10, 20251 (2020).

New Member of Staff


We are delighted to announce that Dr Aleksander Buseth Mosberg, has just joined the team as a SuperSTEM staff scientist! Aleskander is a FIB specialist joining us from NTNU: Norwegian University of Science and Technology

New Member of Staff


We are delighted to announce that Dr Paul Sharp , has just joined the team as a computational scientist! Paul will also be a part of the STFC Scientific Computing Department and will be working on structure discovery, electronic structure calculations and EELS simulations.

RMS Mid-Career Scientific Achievement Award 2020 goes to Quentin Ramasse


We are delighted to congratulate our very own Prof Quentin Ramasse on being one of the six recipients of the RMS Mid-Career Scientific Achievement Award 2020. The award celebrates and marks outstanding scientific achievements in any area of microscopy or flow cytometry for established, mid-career researchers. Pop the bottle!

Paper on Hyperbolic Metamaterial Nanostructures on the cover of Advanced Optical Materials


Optical metamaterials are composed of sub‐wavelength structures and exhibit unusual electromagnetic properties not observed in nature. One class of these materials, hyperbolic metamaterials (HMMs), is highly anisotropic media with opposite signs of permittivity tensor components in different directions. These materials can be engineered to have unusual properties, including broadband perfect absorption using particles or gratings, negative refraction, and resonant gain singularities. There is a wide range of potential uses enabled by these properties, such as sub‐diffraction resolved imaging, optical cloaking, single‐molecule biosensing, and applications in nonlinear optics and quantum optical circuits.

In a new study, recently published in Advanced Optical Materials, researchers from the Instituto Italiano di Tecnologia (IIT), in collaboration with SuperSTEM’s Quentin Ramasse, explore the spatial distribution of plasmon polaritons in multilayered HMM nanostructures. They show that HMM pillars are useful for their separation and adjustability of optical scattering and absorption, while HMM slot cavities can be used as waveguides with high field confinement. The nature of the modes is confirmed with corresponding simulations of EEL and optical spectra and near‐field intensities.

The work was selected for the front cover of the July 2020 issue

Full paper: T. Isoniemi, N. Maccaferri Q. M. Ramasse, G. Strangi, F. De Angelis, Adv. Optical Mater. 2020, 8, 200277

EMS Outstanding Paper Award for the year 2019


We are very pleased to announce that our Physical Review Letters, 122, 016103 (2019), on “Phonon Spectroscopy at Atomic Resolution”, by F. S. Hage, D. M. Kepaptsoglou, Q. M. Ramasse, and L. J. Allen, has received the 2019 European Microscopy Society Outstanding Paper Award, in Instrumentation and Technique Development.

Find the paper here:

Accurate EELS background subtraction – an adaptable method in MATLAB


Electron energy-loss spectroscopy (EELS) is a technique that can give useful information on elemental composition and bonding environments. However in practice, the complexity of the background contributions, which can arise from multiple sources, can hamper the interpretation of the spectra. As a result, background removal is both an essential and difficult part of EELS analysis, especially during quantification of elemental composition.

In a new article just published in Ultramicroscopy, Kayleigh Fung from the Nottigham NanoCarbon Group has developed in collaboration with SuperSTEM a series of scripts written in MATLAB v. R2019b that aims to provide statistical information on the model used to fit the background, allowing the user to determine the accuracy of background subtraction. The scripts were written for background subtraction of vibrational EELS in the ultralow-loss region near the zero-loss peak but can also be applied to other kinds of EEL spectra.

The scripts are freely available for download

Full paper: K.L.Y. Fung, M. W. Fay, S. M. Collins, et al , Accurate EELS background subtraction – an adaptable method in MATLAB, Ultramicroscopy (2020)

2020 Kavli Prize for Nanoscience recognises electron microscopy pioneers


It is an absolute pleasure and an honour to congratulate our very own Prof. Ondrej Krivanek for being awarded the 2020 Kavli Prize for Nanoscience, alongside fellow pioneers of aberration correction and electron microscopy Prof. Harald Rose and Prof. Max Haider, and Prof. Knut Urban.

Without Ondrej and of course without Nion co-founder Niklas Dellby (although not on the recipient list today, Niklas has been absolutely key in the revolution in electron microscopy we have all witnessed), there simply would not be a SuperSTEM Laboratory. It has been a true privilege to work with them for over two decades, from the early days of the Mark I STEM corrector at the Cavendish Laboratory in Cambridge to the dizzying heights of meV EELS these past few years.

From all of us at SuperSTEM, past and present, thank you and congratulations on this most deserved of awards!!

Join us on a plasmonic picnic in ACS Nano: studying the plasmonic response of singly-twinned Mg tents, chairs, tacos and kites!


To beat the confinement blues, nothing like a (plasmonic) picnic! In a recently published ACS Nano paper, SuperSTEM collaborators Jeremie Asselin, Emilie Ringe and their colleagues at the University of Cambridge study the plasmonic properties of singly-twinned Mg nanoparticles with shapes resembling tents (aptly named “canadiennes” in French), chairs, tacos or kites. Beyond the array of unusual shapes, these NPs, made from earth-abundant magnesium, provide interesting ways to control light at the nanoscale across the ultraviolet, visible, and near-infrared spectral ranges. The study combines numerical predictions and experimental observations including high energy resolution EELS to provide shape prediction, shape characterization, far-field scattering properties and near-field light localization of these exciting nano-object

Full paper: J. Asselin, C. Boukouvala, E.R. Hopper et al., Tents, chairs, tacos, kites and rods: shapes and plasmonic properties of singly twinned magnesium nanoparticles, ACS Nano (2020)

Home working - Updated "Resources" section


Due to the on-going Covid-19 pandemic, the majority of students and researchers are now working from home, many of whom do not have access to specialist software tools.

To help our users and community we are continuously updating our Resources page with links to useful software for data analysis and simulations.

We encourage all researchers that have suggestions about additional resources, tutorials, or have developed analysis code they would be willing to share with the community, to contact us so we can update the list.

8th SuperSTEM Summer School 2020 postponed by a year


We are very sorry to announce that the uncertainties surrounding the current Covid-19 epidemic have led us to take the very difficult decision to postpone the 8th SuperSTEM summer school until the summer of 2021. Even if some travel restrictions are lifted by July, we felt the disruptions we are all facing at the moment would make it impractical (and possibly unsafe) to organise or plan your travels to the event.

Although the exact date is not yet fixed, we are aiming to hold the 2021 summer school around the same time of the year as planned for this year, i.e. early July.

We will of course offer you the option to roll over your application to next year, hoping that your personal circumstances will still allow you to take part. We will contact you ahead of the official application phase for next year. Of course, do check our events page for updates on the summer school and let us know if you have any questions.

In the meantime, please all stay safe, and we look forward to seeing you in Daresbury in happier circumstances.

On behalf of the school organising committee.

Prof Quentin Ramasse

Director SuperSTEM

'Seeing' single atom vibrations with a STEM microscope


The modification of vibrational properties of materials by single atom point defects has been predicted for decades. In a paper just published in Science, SuperSTEM scientists Dr F. Hage, D. Kepaptsoglou and Prof. Q. Ramasse. in collaboration with Dr. G. Radtke and Dr. M. Lazzeri of Sorbonne Université (France), used electron energy loss spectroscopy (EELS) in the scanning transmission electron microscope (STEM) and first principles calculations to record and understand the characteristic vibrational response of an individual silicon atom defect in single layer graphene.

The finely focused electron beam in our microscope allowed for probing this response atom-by-atom, revealing that the defect-induced characteristic vibrational signal is, by and large, localised on the Si atom itself. Our chosen approach should be applicable to atomically precise vibrational response measurements of defects and other inhomogeneities within a wide range of materials systems, in the electron microscope.

Full paper: F. S. Hage, G. Radtke, et al., Single-atom vibrational spectroscopy in the scanning transmission electron microscope, Science (2020)

Mapping functional groups with vibrational spectroscopy: resolution <15nm achieved


Vibrational spectroscopies directly record details of bonding in materials, but spatially resolved methods have been limited to surface techniques for mapping functional groups at the nanoscale. Electron energy loss spectroscopy (EELS) in the scanning transmission electron microscope presents a route to functional group analysis from nanoscale volumes using transmitted subnanometer electron probes. In a new paper just published in Nano Letters, SuperSTEM associate Dr Sean Collins from the University of Cambridge in collaboration with staff members Dr. Demie Kepaptsoglou and Prof Quentin Ramasse, demonstrate that vibrational EELS can be used to map linkers in a metal–organic framework (MOF) crystal–glass composite material, with recorded spatial resolution <15 nm at interfaces in the composite. These results present a complete nanoscale analysis of the building blocks of the MOF composite and establish spatially resolved functional group analysis using electron beam spectroscopy for crystalline and amorphous organic and metal–organic solids.

Full paper: S. M. Collins, D.M. Kepaptsoglou, J. Hou, et al, Functional Group Mapping by Electron Beam Vibrational Spectroscopy from Nanoscale Volumes, Nano Letters (2020)

Engineering grain boundaries at the 2D limit: ultra-high density of GBs in MoS2 catalyses the hydrogen evolution reaction


The best way to start the new year is with a new publication! SuperSTEM users at NTU in Singapore and IC2N in Barcelona, along with a long list of collaborators across the world including SuperSTEM's Quentin Ramasse, have developed a unique synthesis technique to produce the highest recorded density of grain boundaries in 2-dimensional sheets of MoS2, providing exceptional catalyzing capabilities in particular for the hydrogen evolution reaction. The study, published in Nature Communications on the 2nd of January, provides a thorough STEM structural study of these remarkable catalysts, along with real life demonstrations in full scale devices of their potential for hydrogen production. Be sure to browse the 45 page (!) supplementary material section for all the details..

Full paper: Y. He, P. Tang, Z. Hu et al., Engineering grain boundaries at the 2D limit for the hydrogen evolution reaction, Nature Communications 11, 57 (2020).

Happy 17th Birthday to SuperSTEM!

How our baby has grown!

Autumn arrivals


We are delighted to announce that Dr Matthieu Bugnet, CNRS Associate Research Professor, from the National Institute of Applied Sciences of Lyon (INSA Lyon), has just joined the team as a visiting SuperSTEM staff scientist!

New sample finishing equipment installed


A Fischione 1040 Nano Mill for FIB specimen finishing and a Fischione 1051 TEM Mill for ion beam thinning have been added to the sample preparation toolkit of the facility. Both instruments are equipped with liquid nitrogen cooling capabilities for thinning sensitive samples.

The instruments are now open to user access: please submit proposals as for regular beam time access.

Shedding light on the functional chemistry of organic meteorites


Organic matter was widespread in the early solar nebula and might have played an important role for the delivery of prebiotic molecules to the early Earth. In a new study published in Meteoritics and Planetary Science, researcher Dr. Christian Vollmer (University of Munster, Germany) in collaboration with SuperSTEM and researchers from the Max Plank Institute for Chemistry (Mainz ,Germany) investigated the textures, isotopic compositions, and functional chemistry of organic grains in the Renazzo carbonaceous chondrite by combined high spatial resolution techniques, including vibrational spectroscopy using SuperSTEM's monochromated Hermes microscope. These combined high‐spatial resolution techniques offer a deeper understanding of the evolution and processing events of organic matter in diverse extraterrestrial environments such as parent body aqueous alteration.

Full paper: C. Vollmer et al., " Isotopic compositions, nitrogen functional chemistry, and low‐loss electron spectroscopy of complex organic aggregates at the nanometer scale in the carbonaceous chondrite Renazzo" , Meteoritics&Planetary Science (2019)

A Novel Strategy for Enhancement of Thermoelectric Response in Oxides


Nanostructuring is an efficient route for enhancing the thermoelectric response of materials. In a paper recently published in ACS Applied Materials and Interfaces, researchers from Prof. Robert Freer's group at the University of Manchester in collaboration with SuperSTEM demonstrate a report a new synthesis and engineering strategy for nanostructuring oxide ceramics and demonstrate its effectiveness on an important n-type thermoelectric SrTiO3. Using combined synthesis and heat treatment strategies led to the formation of a complex nanostructure within the grains, significantly enhancing the performance of thermoelectric oxides; the approach could find much wider application in providing valuable guidance in the routes to synthesize future target materials.

Full paper: F. Azough, et al "Self-Nanostructuring in SrTiO3: A Novel Strategy for Enhancement of Thermoelectric Response in Oxides" ACS Appl. Mater. Interfaces 11 (2019) 32833-32843

Farewell to Patricia


We bid farewell to our staff scientist Patricia Abellan Baeza who is moving on to new adventures at the Institut des Matériaux Jean Rouxe in Nantes, France. Best of luck with the move and every success in your new post! We'll miss you!

SuperSTEM User Forum – National Research Facility Update at mmc2019

Monday 1 July 2019, 11.30 – 13.30, Manchester Central

This informal pre-congress session will consist of brief recent scientific highlights from the facility, alongside an update on facility upgrade plans and scheduled instrumentation improvements.

These include the imminent installation of an advanced new spectrometer which promises to improve the energy resolution of SuperSTEM3 for EELS to below 5meV, off a high solid angle EDXS detector for SuperSTEM2, and the procurement of an advanced focused ion beam and sample preparation equipment to assist our users and collaborators in getting the most from their facility beamtime.

Current and prospective users will be able to directly discuss projects and access procedures with facility staff.

This forum is free to attend and includes a sandwich lunch. To register your interest, please email Katie Reynolds;

Last available places: Second Catania School on Electron Energy Loss Spectroscopy: from conventional to counting EELS; 22-25 July 2019

This spectroscopy school, organised by the BeyondNano Laboratory in collaboration with SuperSTEM and supported by the Esteem3 network, provides an intensive 4-day programme that incorporates lectures, computer laboratories, and microscope practicals to provide participants with comprehensive, hands-on training on key EELS topics and technology. This course reviews the basic theory and practice of EELS imaging and analysis in the TEM.

Some prior experience with electron microscopy and analytical techniques is recommended. By the end of the course, participants can expect to know how best to optimize the performance of their EELS hardware as well as their EELS experimental setups in order to capture and extract the maximum amount of information from their TEM samples.

Course directors: Dr Giuseppe Nicotra (BeyondNano), Prof. Quentin Ramasse (SuperSTEM)

Confirmed speakers: Dr Stefan Loffler (TU Wien), Dr Paolo Longo (Gatan Inc, USA), Dr Katherine E. MacArthur (Ernst Ruska-Centre), Dr Eiji Okunishi (Jeol Ltd.), Dr Pavel Potapov (TU Dresden), Prof. Quentin Ramasse (SuperSTEM Laboratory), Dr Nahid Talebi (Max Plank Institute for Solid Sate Rsearch)

All details are available on the school website:

UV optical response of single boron and nitrogen atom dopants in graphene

Tailoring of graphene’s already excellent properties is highly desirable for optimising its implementation in various devices. The incorporation of single atom substitutional impurities is a means by which control over electronic structure and plasmonic response can be achieved. Of particular interest for electronic and optoelectronic applications, boron and nitrogen impurities induce a p and n doped character in graphene, while also modifying its plasmonic response.

In a paper, just published in Advanced Functional Materials, researchers from SuperSTEM, in collaboration with Dr. Myron D. Kapetanakis (University of Alabama at Birmingham, AL, USA) and Dr. Juan-Carlos Idrobo (ORNL, TN, USA), investigate the extreme-UV optical response of individual boron and nitrogen atom impurities in graphene, at the atomic scale. Using a combination of STEM-EELS and DFT modelling, they show that atomic-scale energy-dependent variations in spectroscopic image contrast result directly from dopant-induced modifications of the electronic density of states.

SuperSTEM scientist to serve on the Editorial Board of Micron

Patricia Abellan, SuperSTEM staff scientist, was recently invited to join the Editorial Board of the journal Micron, an Elsevier well-stablished publication within the electron microscopy community dealing with research where advanced microscopy plays a central role.

Editorial Board members represent key scientific and technical areas of expertise with strong impact on the Micron readership and our research and development community. As a board member, Abellan will have the opportunity to assist Journal Editors and the publisher with such efforts as the identification of new/evolving topics for topical issues and outstanding authors for invited reviews, as well as assist the Journal Editors in the evaluation and in their decision if needed within the manuscript review process.

Upcoming event: SuperSTEM Scientific Forum and Users’ Workshop – 16-17 May 2019

Please mark your calendars for an exciting upcoming event this spring: the SuperSTEM Scientific Forum and Users’ Workshop. We are planning an informal 1 ½ day scientific meeting with presentations and lectures from the SuperSTEM user community and beyond, including national and international invited speakers. The event will also provide an opportunity to tour the facility and to see the instrumentation upgrades scheduled to be commissioned this year. An open forum will also take place with facility status update and a discussion of future capabilities to be included on the facility roadmap so it can continue to offer unique instrumentation to the community.

The scientific programme is currently being drawn up for the 16-17 May. Please consult the SuperSTEM Events webpage for further details as they become available

First ever demonstration of phonon spectroscopy at atomic resolution - Editors' Suggestion in PRL


The vibration of atoms in solids, or lattice dynamics, is described in terms of quantised collective oscillations of the nuclei, called phonon modes - vibrational waves propagating through matter at very specific frequencies. The work described in this collaboration between SuperSTEM and Prof. Les Allen at the University of Melbourne demonstrates for the first time the ability to map, or image, at atomic resolution the intensity variations of phonon modes across a crystalline sample, using vibrational EELS in the STEM. Phonons are central to modern physics, underpinning our understanding of phenomena such as superconductivity, thermal transport or even structural phase transitions, which in turn govern the properties of every-day functional materials. It is believed that the structure and chemistry of materials, all the way down to the single atom level, can affect the behaviour of phonons. Being able to probe these phenomena at the atomic scale, orders of magnitude higher than previously possible, is thus a step change in the experimental toolbox available to physicists, chemists and materials scientists alike. The methodology developed in this work also provides unprecedented insights into image formation mechanisms in the electron microscope, demonstrating conclusively and directly that inelastic scattering associated with phonons excitations plays a central role in generating the contrast widely used for atomic resolution high angle annular dark field electron microscopy.

Full paper: F.S. Hage, D.M. Kepaptsoglou, Q.M. Ramasse and L.J. Allen, “Phonon Spectroscopy at Atomic Resolution”, Physical Review Letters, 122, 016103 (2019).

For more details:

Unveiling the optical properties and coordination chemistry of metal–organic framework glass blends


Amorphous-MOFs are the amorphous analogue of crystalline metal–organic frameworks (MOFs): network solids in which inorganic nodes (clusters or metal ions) are linked via organic ligands in an infinite array. The diversity of bond strengths and structures possible in the coordination environment of MOFs gives rise to important properties; amorphous MOFs that retain such critical coordination are very promising due to their distinct optical properties.

In a new paper, just published in the Journal of the American Chemical society, researchers from the University of Cambridge in collaboration with SuperSTEM provide insights into the optical properties of a blend of two zeolitic imidazolate framework (ZIF) MOFS. A combined STEM-EELS and DFT study, reveals that the electronic structure of the precursor phases is retained in the ZIF glass blends. The study indicates that the distinct properties observed in glass blends arise from interactions between domains in the glass, presenting opportunities for engineering MOF glasses for dielectric optical applications.

Full paper: S.M. Collins , D.M. Kepaptsoglou , K.T. Butler, L. Longley, T.D. Bennett, Q.M. Ramasse, and P.A. Midgley, "Subwavelength Spatially Resolved Coordination Chemistry of Metal–Organic Framework Glass Blends", Journal of the American Chemical Society (2019).

Read more in:

How It Works: SuperSTEM


The SuperSTEM facility and our very own Dr Demie Kepaptsoglou feature in the November issue (118) of the How it works magazine in a special on Small Science.

Revolutionising magnetic device and sensor technology: the discovery of a new exchange bias formation mechanism controllable at the nano-scale


Most magnetic devices in everyday electronics, including sensors, hard drive read-heads or magnetic random access memories (MRAMs) rely on the exchange bias effect, a magnetic interaction that couples a ferromagnetic and an antiferromagnetic material, resulting in a unidirectional displacement of the ferromagnetic hysteresis loop by an amount called the ‘exchange bias field’. In a breakthrough study, published in the journal Nature Materials, researchers from the Technical University of Madrid and the University of York have uncovered in collaboration with SuperSTEM a ground-breaking alternative process for the generation of the exchange bias field. This spontaneous process involves the direct control of minute structural defects in the antiferromagnetic part of the device, whose observation was only possible thanks to the capabilities of the SuperSTEM instruments. Uncovering this microscopic mechanism for establishing and controlling the exchange bias opens new pathways for the design of future magnetic devices.

Full paper: A. Migliorini, B. Kuerbanjiang, T. Huminiuc et al., “Spontaneous exchange bias formation driven by a structural phase transition in the antiferromagnetic material”, Nature Materials, 17, pp. 28–35 (2018).

For more details:

Electron microscopy reveals fundamental properties of a technologically essential class of materials


The pyrochlore crystallographic structure is ubiquitous across materials domains, being studied in connection with everything from quantum magnetism, ferroelectricity, luminescence and catalysis to radioactive waste disposal. In each of these subfields, there have been for decades a set of “mysteries”: why is the observed magnetism so sensitive to changes in composition? Why are some compositions not ferroelectric?, etc… A wide-ranging collaboration involving researchers at the National Institute of Standards and Technology (NIST, Maryland, USA), Johns Hopkins University (Maryland, USA) and SuperSTEM reported in the journal Nature Communications how these mysteries have finally been solved, revealing the existence of a previously unappreciated structural flexibility in the pyrochlore structure, which leads to local complexity even in chemically perfect materials. By confirming the universality of these geometric effects and further demonstrating how the magniture of this local disortder can be controlled chemically, this ground-breaking research not only solves long-standing technological puzzles, but also opens new avenues for the chemical design of advanced materials.

Full paper: B.A. Trump, S.M. Koohpayeh, K.J.T. Livi et al., “Universal geometric frustration in pyrochlores”, Nature Communications, 9, 2619 (2018).

For more details:

Thank you all for a very successful Summer School!

Our 7th biennial Summer School on Advanced Topics on Electron Microscopy: Theory meets experiment, was held at the Sci-Tech Daresbury Campus between 28 June and 4 July 2018.

This year's event was co-organised with the Scientific Computing Department of the Science & Technology Facilities Council and CCP9, the Collaborative Computational Project for the Study of the Electronic Structure of Condensed Matter.

We were fortunate to host world renowned scientists, who delivered exciting & insightful lectures to a new generation of electron microscopy experts. In addition to the lectures, the participants had the opportunity to learn how to operate our instruments and try their hands on some advanced computational tools during 6 days of a densely packed scientific programme.

Our guests came from 21 different countries, including visitors from as far afield as Australia, Japan and Korea. We would like to thank ERSRC for their continuing support of the SuperSTEM facility, as well as their support to our events through our core funding and funding of CCP9.

The SuperSTEM Summer School was made possible in part through the generous support of the RMS, EMS, Nion Co. , Hitachi, Bruker, and STFC .


Science Advances: Exploring phonons in momentum space at the nanometer scale


Acoustic and optical phonons affect fundamental physical properties such as the conduction of sound and heat. A SuperSTEM-led team with invaluable contributions from collaborators at the University of Oxford, Royal Holloway University of London, RMIT University and Nion Company, has developed a novel momentum-resolved electron energy loss spectroscopy approach that makes it possible to study the dispersion of phonons in volumes of material up to 20 orders of magnitude smaller than was possible with other experimental techniques.

This could provide a way to understand how phonon propagation is affected by atomic-scale point or line defects, or even single atom dopants!

F.S. Hage, R.J. Nicholls, J.R. Yates et al. , Nanoscale momentum-resolved vibrational spectroscopy, Science Advances 4, eaar7495 (2018).

For more details:

Last Call for Applications for the SuperSTEM Summer School 2018!

The preliminary program with details of the talks and speakers has been uploaded to the summer school's webpage! Note: There are now only a few places remaining for the 7th SuperSTEM Summer School 2018.

As the original closing date falls into the Easter break we decided to extend the application period until 9/4/2018.

29/6 - 4/7/2018

Application for the 7th SuperSTEM Summer School is open! Read more....

Launching in-situ heating & biasing experiments


We are excited to announce the commissioning of our Protochips Fusion holder for in-situ heating and biasing experiments in our SST3 Nion UltraSTEM instrument. The holder is available for user access via the usual process.

Special Issue of Micron on “The study of biological specimens, nanomaterials, and their dynamics using liquid-phase electron microscopy”


Professor Niels de Jonge (IMN in Saarbrücken – Germany) and SuperSTEM scientist Patricia Abellan are serving as the guest editors of an upcoming Special Issue of Micron on “The study of biological specimens, nanomaterials, and their dynamics using liquid-phase electron microscopy”.

This Special Issue of Micron aims to cover the present state of liquid-phase EM, and will examine the current challenges as well as future directions of the field. The manuscripts will cover both experimental- and theoretical efforts to enhance our understanding of all factors involved with electron microscopy in liquids.

A detailed description of this Special Issue and submission details can be found at the following website:

Unravelling the structure and chemistry of high capacity Li-battery materials


Modern society’s increasing demands for cleaner, safer, cheaper, and longer-lasting energy storage solutions are driving many industries to develop new and improved battery materials. This is particularly true in the automotive sector, where the electrochemical shortcomings that currently plague the implementation of high capacity materials s LMRTMOs as a viable long-term choice of lithium-ion battery cathode must be addressed urgently. One promising avenue consists in deviating from the widely studied high lithium/transition metal (Li/TM) ratio chemistries. However, almost no information is available on the effect of composition on the complex structure of the pristine, uncycled LMRTMOs.

Researchers from Lawrence Berkeley National Laboratory, in collaboration with Envia Systems and SuperSTEM address this long-standing issue in a recent publication in RSC Energy & Environmental Science.

A.K. Shukla, Q. M. Ramasse, C. Ophus, et al., Effect of composition on the structure of lithium- and manganese-rich transition metal oxides, RSC Energy and Environmental Science (2018)

For more details:

Managing dose-, damage- and data-rates in multi-frame spectrum-imaging


As an instrument, the scanning transmission electron microscope is unique in being able to simultaneously explore both local structural and chemical variations in materials at the atomic scale. This is made possible as both types of data are acquired serially, originating simultaneously from sample interactions with a sharply focused electron probe. Unfortunately, such scanned data can be distorted by environmental factors, though recently fast-scanned multi-frame imaging approaches have been shown to mitigate these effects.

In a recently published paper, result of a collaborative effort between the Universities of Oxford, Warwick, Manchester and SuperSTEM the same same approach is demonstrated for spectroscopic data.

L. Jones, A. Varambhia, R. Beanland, et al. , Managing dose-, damage- and data-rates in multi-frame spectrum-imaging, Microscopy (2018)

For more details:

Understanding heterointerfaces in semiconductor nanowire devices


The functionality of nano-scaled electronic devices, based on III-V heterostructure nanowires, is extremely sensitive to the quality of the interfaces at the atomic scale. In a material system such as GaSb-InAs nanowires, where GaSb and InAs are intrinsic p-type and n-type semiconductors, respectively, the heterointerfaces act as p-n junctions in which atomic arrangement plays a crucial role. In the recently published paper, researchers from the University of Lund in collaboration with SuperSTEM investigate the radial and axial heterointerfaces of the GaSb-InAs nanowire system which is used as tunneling field-effect transistors (TFETs). We reveal the abruptness of the material transition at the radial heterointerface, in contrast to the axial one were interdiffusion occurs. This is of high importance in charge transport properties of the system. This work has been conducted in collaboration with NanoLund (Lund, Sweden), one of the worldwide leading consortia in the field of semiconductor nanowires. Cover art is accepted for the March 2018 issue of Nano Letters, which is one of the top-ranked journals in the field.

R. Zamani, F.S. Hage, S. Lehmann†, et al., Atomic-Resolution Spectrum Imaging of Semiconductor Nanowires, Nano Letters (2017)

For more details:

SuperSTEM took to its soapbox to showcase science using art


SuperSTEM’s proposed topic “Below the surface of matter” was selected to be part of the first Soapbox Art & Science Leeds 2017 project, which took place on Friday 6th October. The engagement event was part of the annual free multi-arts and light festival Light Night Leeds 2017 in the University Quarter. SuperSTEM scientist Dr. Patricia Abellan took to her soapbox to showcase the relevance of plasmonics nanostructures in everyday life and the role of electron microscopy and of SuperSTEM within the scientific community. In order to bring the concepts of plasmonics and of nanotechnology to the general public, we worked together with visual artist and Doctor of Art History, Dr. Tatiana Abellan, from the Fine Arts Faculty at the University of Murcia, Spain. She created a set of lighted bottled coloured solutions and a series of videos that were projected inspired on the colloidal chemistry of plasmonic nanoparticles and a selection of SuperSTEM works on graphene and metallic structures. The Soapbox Art & Science project is supported by the Science and Technology Facilities Council and got great feedback and enthusiasm form audience members.

Soapbox Art & Science Leeds 2017:

Light Night Leeds 2017:

Meet our visual artist, Dr. Tatiana Abellan (University of Murcia, Spain):

New mechanism of spontaneous exchange bias formation revealed


Most of the magnetic devices in advanced electronics rely on the exchange bias effect, a magnetic interaction that couples aferromagnetic and an antiferromagnetic material, resulting in a unidirectional displacement of the ferromagnetic hysteresis loop by an amount called the ‘exchange bias field’. Setting and optimizing exchange bias involves cooling through the Néel temperature of the antiferromagnetic material in the presence of a magnetic field. In a recently published paper in Nature Materials, researchers from the Universidad Politécnica de Madrid, Universidad Autónoma de Madrid and the University of York in collaboration with SuperSTEM demonstrate an alternative process for the generation of exchange bias in IrMn/FeCo bilayers. The physical process for the generation of exchange bias is based on a room temperature spontaneous crystallization of the antiferomagnetic IrMn layer and is proposed as an alternative mechanism to standard thermal annealing. The possibility of controlling the direction of the exchange microscopically, and the large average grain size of the crystallized IrMn, are also interesting features for devices based on these structures or for further research on the microscopic behavior of the exchange bias.

A. Migliorini, B. Kuerbanjiang, T. Huminiuc, et al. Spontaneous exchange bias formation driven by a structural phase transition in the antiferromagnetic material, Nature Materials

More details:

Breakthrough for nano-design of catalysts to combat air pollution


In the latest edition of the Nature Communications journal, long-standing SuperSTEM collaborator Stig Helveg shares scientific evidence that nano-designed titanium crystals can improve catalysts that reduce air pollution. The optimized titanium oxide crystals boost the reactivity of vanadium oxide in their vicinity. This discovery was made by the Haldor Topsoe-led team, including lead author Martin Ek, in collaboration with SuperSTEM’s Quentin Ramasse. This research is crucially important, because vanadium SCR catalysts remove nitrogen oxides (NOx) from engine exhaust gases, power plants, and industrial emissions. If NOx is allowed into the atmosphere, it forms smog, acid rain, and a wide variety of other toxic products. Future vanadium catalysts based on nano-designed titanium crystals will most probably be significantly better at reducing these health hazards. People in mega-cities around the world will be able to breathe much cleaner air and live healthier lives. And companies will be able to live up to increasingly strict environmental regulation

C.M. Ek, Q.M. Ramasse, L. Anarson et al., Visualizing atomic-scale redox dynamics in vanadium oxide-based catalysts, Nature Communications 8, 305 (2017).

For more details:

Towards atomically precise manipulation of 2D nanostructures in the electron microscope


Despite decades of research, the ultimate goal of nanotechnology—top-down manipulation of individual atoms—has been directly achieved with only one technique: scanning probe microscopy. In a new topical review published in IOP 2D Materials, scientists from the University of Vienna in collaboration with scientists from SupersTEM and the National Institute of Advanced Industrial Science and Technology (AIST) inTsukuba Japan demonstrate that scanning transmission electron microscopy (STEM) is emerging as an alternative method for the direct assembly of nanostructures, with possible applications in plasmonics, quantum technologies, and materials science.

Using density functional theory molecular dynamics the authors provide a comprehensive reanalysis of available experimental data on beam-driven dynamics in light of the state-of-the-art in simulations, and identify important targets for improvement. Overall, the modern electron microscope has great potential to become an atom-scale fabrication platform, especially for covalently bonded 2D nanostructures.

Toma Susi, D.M. Kepaptsoglou et al. 2017 2D Mater. 4 042004

For more details:

SuperSTEM from the Skies


When the in-flight movie entertainment doesn't quite cut it the modern researcher can usefully while away the hours with a remote session on the newest of SuperSTEM's instruments.

Robust core-loss EELS modeling of doped graphene


Electron energy loss spectroscopy (EELS) in a STEM microscope is possibly the most powerful analytical tool for understanding the chemical and electronic structure of materials down to the atomic level. However, direct interpretation of the spectra is more than often not trivial. The ability of accurately and quantitatively modelling the EELS response is essential in undertanding experimental results.

In a paper, recently published in the Journal of Physics: Condensed Matter members of SuperSTEM in collaboration with the University of Leeds explore some of the challenges in theoretical density functional theory (DFT) calculations of 1s core-level EEL K-edge spectra of pure, B-doped and N-doped graphene are explored. The ground state approximation is found in this specific system to perform consistently better than the commonly used frozen core-hole approximation. The impact of including or excluding a core-hole on the resultant theoretical band structures, densities of states, electron densities and EEL spectra were all thoroughly examined and compared. It is concluded that the frozen core-hole approximation exaggerates the effects of the core-hole in graphene and should be discarded in favour of the ground state approximation. These results are interpreted as an indicator of the overriding need for theorists to embrace many-body effects in the pursuit of accuracy in theoretical spectroscopy instead of a system-tailored approach whose approximations are selected empirically.

T.P. Hardcastle et al., Robust theoretical modelling of core ionisation edges for quantitative electron energy loss spectroscopy of B- and N-doped graphene, J. Phys.: Condens. Matter 29 (2017) 225303

More details:

Understanding the origin of reduced magnetization in magnetite nanoparticles


Magnetite nanoparticles are partiularly sought after for many technological such as magnetic sensors,

magnetic storage media, MR imaging, but also biomedical applications such as magnetic resonance imaging, targeted drug delvely and cancer treatment. The functionality of the nanoparticles for applications depends crucially on the magnetic properties. Researchers from the Universities of York and Carnegie Mellon Univeristy in collaboration wth SuperSTEM, demonstate how the presence of structural defects such as antiphase boundaries in small magnetite nanoparticles lead to signficantly reduced magnetization, relative to the bulk. Atomistic magnetic modelling of nanoparticles with and without these defects reveals the origin of the reduced moment. Strong antiferromagnetic interactions across antiphase boundaries support multiple magnetic domains even in particles as small as 12-14 nm.

The results appeared in Scientific Reports.

Z. Nedelkoski, D. Kepaptsoglou, et-al., Origin of reduced magnetization and domain formation in small magnetite nanoparticles, Scientific Reports 7 (2017) 45997

More details:

Unravelling the functionality of high performance thermoelectric oxides in Chemistry of Materials


In the search for clean and renewable energy, thermoelectric oxides emerge as dependable and cheap sources of producing electricity from waste heat. Sr doped Bismuth Cobaltate (BSCO) is one of the best p-type thermoelectric oxides but its structural and electronic properties are still poorly understood. By combining experimental and computational approachs researchers from the Universities of Bath and Manchester in collaboration with SuperSTEM, shed light into the electronic transport mechanism of BSCO. The study shows that level of Bi deficiency in the rock-salt layers,leads to a band gap opening and increases p-type electronic conductivity due to the formation of Co4+ species that serve as itinerant holes within the predominantly Co3+ framework of the CoO2 layer. These atomicscale structural and electronic structure modifications are in turn responsible for the high positive Seebeck coefficient of the material measured experimentally. This provides another step in understanding this fascinating material, which should be of great benefit in future design of oxide thermoelectric materials that are composed of inexpensive and abundant elements.

The results were published in Chemistry of Materials earlier this month.

J.D. Baran, D. Kepaptsoglou, M. Molinari, et al, Role of Structure and Defect Chemistry in High-Performance Thermoelectric Bismuth Strontium Cobalt Oxides, Chemistry of Materials 28 (2016) 7470–7478

More details:

Advanced techniques for visualising plasmons and understanding their interaction with molecular systems reviewed.


SuperSTEM staff members Patricia Abellan, Fredrik Hage, Quentin Ramasse and former SuperSTEM staff Ruth Chantry contributed to 2 invited reviews in the emerging investigator issue of Analyst and in Advances in Physics: X, in collaboration with Patrick El-Khoury and a research team from Pacific Northwest National Laboratory (PNNL). These two reviews highlight different techniques employed to visualize the enhanced electric fields associated with surface plasmons, and to probe various aspects of the immediate local environments surrounding individual molecules. Through select practical examples from the two laboratories, the team discussed how localized and propagating surface plasmons can be visualized at the ultimate space, time and energy limits using various techniques powered by photons, photoelectrons, and electrons. The prospects of characterizing either bare or chemically functionalized plasmonic nanostructures through a combination of the various described techniques are discussed in the two references provided below.

P. Z. El-Khoury, P. Abellan, Y. Gong, F. S. Hage, J. Cottom, A. G. Joly, R. Brydson, Q. M. Ramasse and W. P. Hess, Visualizing surface plasmons with photons, photoelectrons, and electrons, Analyst, DOI: 10.1039/C6AN00308G (2016)

P.Z. El-Khoury, P. Abellan, R.L. Chantry, Y. Gong, A.G. Joly, I. V. Novikova, J. E. Evans, E. Aprà, D. Hu, Q. M. Ramasse & W.P. Hess, The information content in single-molecule Raman nanoscopy, Advances in Physics X (2016) DOI: 10.1080/23746149.2016.1140010 .

SuperSTEM welcomed schools and families during the Daresbury Open Week


SuperSTEM opened the doors to visitors on 7th July and 9th July. Thursday’s event was dedicated to Key Stages 4 and 5 students and included talks and demonstrations in SuperSTEM 2. During the busiest day of the Daresbury Open Week, the public day on Saturday 9 July, the Science & Technology Facilities Council (STFC) estimates that more than 7,500 people came to Sci-Tech Daresbury. General public, families and members of different laboratories at Sci-Tech Daresbury were welcome to tour SuperSTEM, which included a visit to the newest monochromated instrument, life demonstration in SuperSTEM 2, outdoors posters, an interactive virtual microscope demonstrations and videos for the youngest ones and an introduction about SuperSTEM scope and its role within the scientific community.


Towards direct badgap Ge1-xSnx nanowires: non-equilibrium grown process reported in Nature Communications.


The development of non-equilibrium group IV nanoscale alloys is critical to achieving new functionalities, such as the formation of a direct bandgap in a conventional indirect bandgap elemental semiconductor. Subhakit Biswas, Jessica Doherty and their co-workers from Prof. Justin Holmes’ group at University College Cork describe the fabrication of uniform diameter, direct bandgap Ge1-xSnx alloy nanowires with a Sn incorporation far in excess of the equilibrium solubility of Sn in bulk Ge, through a conventional catalytic bottom-up growth paradigm using noble metal and metal alloy catalysts. STEM-EELS mapping carried out on SuperSTEM 2 in collaboration with SuperSTEM’s Quentin Ramasse was instrumental in determining the distribution of Ge and Sn within the wires, as well as the quality of the interface with the metal seed particles, both essential to the physical properties of the heterostructure wire. The results were published in Nature Communications earlier this month.

S. Biswas, J. Doherty, D. Saladhukha et al., Non-equilibrium induction of tin in germanium: towards direct bandgap Ge1-xSnx semi-conductors, Nature Communications 7, 11405 (2016). DOI: 10.1038/ncomms11405

Breakthrough in controlling the removal of structural defects in chalcogenides absorber thin films for high efficiency solar cells reported in Energy and Environmental Science.


The development of thin-film solar cells has been a success story in recent years in terms of record efficiencies in the lab. Single junction solar cells based on compound semiconductor films have reached higher energy-conversion efficiencies than polycrystalline silicon. Despite this success and the prospects of novel applications such as flexible, lightweight solar panels, the market share of thin-film solar modules is stagnating. A major problem of compound thin-film solar cells, such as Cu(In,Ga)Se2, is the large gap between lab efficiencies and commercial module efficiencies. A large process parameter space makes trial-and-error optimization a time-consuming and expensive task. Therefore, understanding the underlying atomic-scale physics and chemistry is essential to identify the potential origins of efficiency losses in the transfer from lab- to large-scale fabrication. In this contribution results from an international collaboration including the SuperSTEM Laboratory provide direct insight into defect formation and annihilation during the fabrication of Cu(In,Ga)Se2 films. Consequences for process optimization and design are proposed. The presented approach can also be applied to understand other thin-film fabrication processes.

R. Mainz, E. Simsek Sanli, H. Strange et al., Annihilation of structural defects in chalcogenide absorber films for high-efficiency solar cells, Energy and Environmental Science (2016). DOI:10.1039/c6ee00402d

Solvents to Slow Down In Situ Synthesis: A method for creating net molecular hydrogen environment to form homogeneous metal particles in the STEM discussed in Langmuir


By synthesizing nanomaterials of uniform shape and size, the novel properties of metals arising at the nanoscale can be accessed and the fundamental investigation of their structure-property relationships enabled. SuperSTEM’s Patricia Abellan and a team of scientists from Pacific Northwest National Laboratory in collaboration with Virginia Polytechnic Institute and State University, the University of California-San Diego and Florida State University have presented a new approach to synthesize Pd nanoparticles with homogeneous sub-3nm size by molecular hydrogen in the liquid cell. Molecular hydrogen is a widely used reductant in the synthesis of supported metal catalysts. Creating such suitable environment for in situ synthesis in the electron microscope was achieved by using toluene as the solvent and avoiding exposure of the solution to moisture. This work also aimed at finding new methods for reducing the production of radicals upon electron irradiation. Until now, this challenge has been addressed by lowering the amount of imaging electrons delivered to the liquid sample. This research looks at the problem from a different perspective and proposes the possibility of finding a suitable solvent, such as an aromatic hydrocarbon, which is inherently resistant to high energy electron irradiation, to reduce the overall production of radicals for the same electron dose applied.

P. Abellan, L.R. Parent, N. Al-Hasan, C. Park, I. Arslan, A.M. Karim, J.E. Evans and N.D. Browning, Langmuir, 2016, 32, pp 1468–1477


New Paper in Scientific Reports: Atomic and electronic structure of twin growth defects in magnetite


In magnetic oxides any disturbance to the crystal structure is liable to significantly alter properties such as conductivity and magnetic ordering. The overall properties in those materials are strongly dependent on the local atomic co-ordination and structure due to the local nature of electron hopping mechanisms and super exchange interactions.

A team if scientists from the University of York in collaboration with the Tokyo Institute for Technology and SuperSTEM investigate the impact of stable twin defect in the magnetic properties Fe3O4 thin films. By using aberration corrected scanning transmission electron microscopy and spectroscopy and first principles calculations the sciestist look into the effect of the local atomic structural configuration of the twin boundary on the superexchange interactions between the two Fe sublattices across the twin grain boundary.

New Material Increases the Lifetime of Solar-Powered Electrons :Atom-by-atom control leads to an interface that sustains an internal electric field, an innovative property with promise in the energy conversion and storage


Storing sunlight as fuel that can be later used to drive fuel cells requires new materials. A team of scientist from Pacific Nothwest National Laboratories in collaboration with scientists from SuperSTEM and the Univesity of Oxford has demonstrated that by careful desing interfaces between the oxide materials absorb visible light, producing electrons and holes that might be useful for catalyzing reactions, such as producing hydrogen fuel. If there is nothing to pull those electrons and holes apart, however, they will quickly destroy one another without doing anything useful. By synthesizing this material as a series of alternating layers, the team created a built-in electric field to separate the excited electrons and holes – openi ng new possibilities for better catalytic performance.


Battery mystery solved: SuperSTEM scientists unravel structural ambiguities in lithium- and manganese-rich transition metal oxides in Nature Communications


Using complementary microscopy and spectroscopy techniques, SuperSTEM Associate (and long-term visitor from LBNL) Alpesh Shukla reports in Nature Communications how he and colleagues, including SuperSTEM’s Quentin Ramasse and Fredrik Hage, solved the structure of lithium- and manganese-rich transition metal oxides, a potentially game-changing battery material and the subject of intense debate in the decade since it was discovered. This material is important because the battery capacity can potentially be doubled compared to the most commonly used Li-ion batteries today due to the extra lithium in the structure. Until today, however, scientists had been divided on whether the material structure is single trigonal phase, double phase, or defected single monoclinic phase. The new results give very strong support for the defected single-phase monoclinic model and appear to rule out the two-phase model.

A. Shukla, Q.M. Ramasse, C. Ophus, H. Duncan, F. Hage and G. Chen, Unravelling structural ambiguities in lithium- and manganese-rich transition metal oxides, Nature Communications 6, 8711 (2015).


The new graphene? Liquid-exfoliated black phosphorus in Nature Communications


SuperSTEM collaborators at Trinity College Dublin have demonstrated the successful chemical exfoliation of few-layers solvent-stabilized black phosphorus, a new two-dimensional material which is of great interest for applications, mainly in electronics. Thanks to the use of specific solvents during the exfoliation, Damien Hanlon and co-workers were able to mitigate the normally very rapid structural deterioration of this material, enabling its visualization with atomic resolution using SuperSTEM’s microscropes. The study, published in Nature Communications, also demonstrates that liquid-exfoliated BP nanosheets are potentially useful in a range of applications from ultrafast saturable absorbers to gas sensors to fillers for composite reinforcement.

D. Hanlon, C. Backes, E. Doherty, C.S. Cucinotta, N.C. Berner, C. Boland, K. Lee, A. Harvey, P. Lynch, Z. Gholamvand, S. Zhang, K. Wang, G. Moynihan, A. Pokle, Q.M. Ramasse, N. McEvoy, W.J. Blau, J. Wang, G. Abellan, F. Hauke, A. Hirsch, S. Sanvito, D.D. O’Regan, G.S. Duesberg, V. Nicolosi and J.N. Coleman, Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics, Nature Communications 6, 8563 (2015).


Spectroscopic signature of doping in graphene


SuperSTEM researchers in collaboration with researchers from the Universities of Leeds, Manchester and Gottingen investigate the electronic structure modifications incurred by free-standing graphene through two types of single-atom doping. Trough careful comparison with density functional theory calculations the researchers show that EELS spectra acquired from single B or N dopants can be used as direct fingerprints of the expected p- and n-type behaviour of doped graphene.

D.M. Kepaptsoglou, T.P. Hardcastle, C.R. Seabourne, U. Bangert, R. Zan, J.A. Amani, H. Hofsass, R.J. Nicholls, R. Brydson, A.J. Scott and Q.M. Ramasse, Electronic structure modification of ion-implanted graphene: the scpectroscopic signatures of p- and n-type doping, ACS Nano, Articles ASAP (2015).


Atoms in close-up: SuperSTEM features in Cosmos Magazine


Australia's renowed Cosmos magazine features SuperSTEM research in its look at the building blocks of matter:

What nanoparticulate dispersions look like: review article in Journal of Microscopy


Prof. Rik Brydson and researchers from the University of Leeds were invited by the editors of Journal of Microscopy to review the most common methods for determining the dispersion state of nanoparticulate samples, particularly in liquid media. The team and their collaborators, including SuperSTEM staff Patricia Abellan focused on the determination of particle sizes and shapes as well as particle structure and chemistry, key parameters for understanding their behaviour applied across a very wide range of technologies and industry sectors. The review highlights the potential contributions of scanning probe and electron microscopies and also includes an extensive table summarising the major non-microscopy techniques employed to analyse particulate dispersions.

R. Brydson, A. Brown, C. Hodges, P. Abellan and N. Hondow, Microscopy of Nanoparticulate Dispersions, Journal of Microscopy, Journal of Microscopy, Articles ASAP, doi: 10.1111/jmi.12290 (2015).


New paper in Nano Letters: electrical nature of nano-contacts


A recent paper in Nano Letters by Alex Lord and co-workers from the University of Swansea explores the electrical behaviour of nanocontacts between free-standing ZnO nanowires and the catalytic Au particles used for their growth, showing how the nature of the contact can switch from Schottky to Ohmic depending on the size of the particles in relation to the cross-sectional width of the nanowires. Instrumental to this study were results obtained in collaboration with SuperSTEM staff Quentin Ramasse and Demie Kepaptsoglou.

A.M. Lord, T.G. Maffeis, O. Kryvchenkova, R.J. Cobley, K. Kalna, D.M. Kepaptsoglou, Q.M. Ramasse, A.S. Walton, M.B. Ward, J. Köble and S.P. Wilks, Controlling the electrical transport properties of nanocontacts to nanowires, Nano Letters, Articles ASAP, doi: 10.1021/nl503743t (2015).


Farewell to Mervyn Shannon


After more than 12 years on the SuperSTEM team as Industrial Director, co-Director and on-site Director, Professor Mervyn Shannon recently announced his decision to take an early retirement. An avid traveler and rambler, Mervyn will no doubt spend a fair amount of his extra free time hiking here and abroad, using the high-tech walking poles (graphene re-inforced!) the team bought him as part of his farewell present. But his association with SuperSTEM will not end so abruptly: as honorary Visiting Professor at the University of Liverpool, he will still be coming to the lab very regularly to keep up with new projects and to work on his own research, as a hobby. We wish him all the best!

Pictures from the farewell party at our favourite curry house in Stockton Heath, with special guests Ondrej Krivanek and Niklas Dellby.

New paper in Nature Communications: magnetic phase gradients at complex oxides interfaces


New research highlight! SuperSTEM user Steven Spurgeon uses atomic-resolution STEM-EELS results obtained in collaboration with on-site staff Demie Kepaptsoglou and Quentin Ramasse to show how a magnetic asymmetry observed at the La0.7Sr0.3MnO3 (LSMO)/PbZr0.2Ti0.8O3 (PZT) interface depends on the local PZT polarization and gives rise to gradients in local magnetic moments. The full details have just been published in Nature Communications.

S.R. Spurgeon, P.V. Balachandran, D.M. Kepaptsoglou, A.R. Damodaran, C.L. Johnson, J. Karthik, S. Nejati, L. Jones, H. Ambaye, V. Lauter, Q.M. Ramasse, K.S. Lau, J.M. Rondinelli, L.W. Martin and M.L. Taheri, Polarization screening-induced magnetic phase gradients at complex oxide interfaces, Nature Communications 6, 6735 (2015).


SuperSTEM looks back at a successful SuperSTEM 3 inauguration


Over 120 guests joined the SuperSTEM team and EPSRC to celebrate the installation on STFC's Daresbury Scientific Campus of the facility's new state-of-the-art monochromated Nion Hermes microscope during a hugely successful two-day international workshop.

World-renowned speakers delivered inspiring scientific lectures and provided their views and hopes for what scientists might be able to achieve with this new generation of electron microscope. The "excitement of the unknown", prospects for "mapping phonons and other low energy excitations" were systematic topics of discussion during the lectures, over coffee and late into the night after the gala dinner. These are exciting times for electron microscopy, and with the unprecedented <15meV resolution this instrument already achieves a mere 3 weeks after its arrival on site (in boxes), Prof. Archie Howie's hope to "lure physicists back into electron microscopy to tackle the experimental and theoretical challenges posed by such capabilities" may soon come true.

Read more on our events page.

The installation of the new SuperSTEM 3 is in full swing - and it's big!


Proud to announce the delivery of our new SSTEM3 microscope!!!


A very cold (the outside temperature is barely reaching 0 deg C) but very exciting day for SuperSTEM. The much anticipated Nion UtraSTEM100MC ("HERMES") microscope is finally delivered on site!

A late Christmas present: new microscope shipping from the factory!


Happy New year to all our SuperSTEM users and collaborators: and what better way to start the New Year than with a late Christmas present? Our new microscope, a Nion UltraSTEM100MC ("HERMES") is now on its way from the factory and will be installed and commissioned over the next few weeks in its new custom-designed room at SuperSTEM.

Stay tuned for more news of the installation!! For now, here is a picture of the crates (without wrapping paper or a little bow :( ) waiting to be picked up for shipment outside Nion Co. (photo courtesy of Nion scientist Tracy Lovejoy).

Summary of SuperSTEM User Survey


Thanks to everyone who took the time to complete the survey. Generally you were very supportive of our work to date and of the additional aspects regarding sample preparation, data processing and modelling that we asked about.

Your views were briefly summarised and included in the Statement of Need we submitted to EPSRC on 15 October for the continuation of a Mid-Range Facility for Aberration-Corrected STEM from 2016 - 2021.

A detailed summary of the survey can be found here.